Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 352: 119936, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38218164

RESUMEN

Biodiversity loss and climate change have severely impacted ecosystems and livelihoods worldwide, compromising access to food and water, increasing disaster risk, and affecting human health globally. Nature-based Solutions (NbS) have gained interest in addressing these global societal challenges. Although much effort has been directed to NbS in urban and terrestrial environments, the implementation of NbS in marine and coastal environments (blue NbS) lags. The lack of a framework to guide decision-makers and practitioners through the initial planning stages appears to be one of the main obstacles to the slow implementation of blue NbS. To address this, we propose an integrated conceptual framework, built from expert knowledge, to inform the selection of the most appropriate blue NbS based on desired intervention objectives and social-ecological context. Our conceptual framework follows a four incremental steps structure: Step 1 aims to identify the societal challenge(s) to address; Step 2 highlights ecosystem services and the underlying biodiversity and ecological functions that could contribute to confronting the societal challenge(s); Step 3 identify the specific environmental context the intervention needs to be set within (e.g. the spatial scale the intervention will operate within, the ecosystem's vulnerability to stressors, and its ecological condition); and Step 4 provides a selection of potential blue NbS interventions that would help address the targeted societal challenge(s) considering the context defined through Step 3. Designed to maintain, enhance, recover, rehabilitate, or create ecosystem services by supporting biodiversity, the blue NbS intervention portfolio includes marine protection (i.e., fully, highly, lightly, and minimally protected areas), restorative activities (i.e., active, passive, and partial restoration; rehabilitation of ecological function and ecosystem creation), and other management measures (i.e., implementation and enforcement of regulation). Ultimately, our conceptual framework guides decision-makers toward a versatile portfolio of interventions that cater to the specific needs of each ecosystem rather than imposing a rigid, one-size-fits-all model. In the future, this framework needs to integrate socio-economic considerations more comprehensively and be kept up-to-date by including the latest scientific information.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Cambio Climático
2.
Sci Total Environ ; 904: 166310, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586521

RESUMEN

Under the influence of anthropogenic climate change, hazardous climate and weather events are increasing in frequency and severity, with wide-ranging impacts across ecosystems and landscapes, especially fragile and dynamic coastal zones. The presented multi-model chain approach combines ocean hydrodynamics, wave fields, and shoreline extraction models to build a Bayesian Network-based coastal risk assessment model for the future analysis of shoreline evolution and seawater quality (i.e., suspended particulate matter, diffuse attenuation of light). In particular, the model was designed around a baseline scenario exploiting historical shoreline and oceanographic data within the 2015-2017 timeframe. Shoreline erosion and water quality changes along the coastal area of the Metropolitan city of Venice were evaluated for 2021-2050, under the RCP8.5 future scenario. The results showed a destabilizing trend in both shoreline evolution and seawater quality under the selected climate change scenario. Specifically, after a stable period (2021-2030), the shoreline will be affected by periods of erosion (2031-2040) and then accretion (2041-2050), with a simultaneous decrease in seawater quality in terms of higher turbidity. The decadal analysis and sensitivity evaluation of the input variables demonstrates a strong influence of oceanographic variables on the assessed endpoints, highlighting how the factors are strongly connected. The integration of regional and global climate models with Machine Learning and satellite imagery within the proposed multi-model chain represents an innovative update on state-of-the-art techniques. The validated outputs represent a good promise for better understanding the varying impacts due to future climate change conditions (e.g., wind, wave, tide, and sea-level). Moreover, the flexibility of the approach allows for the quick integration of climate and multi-risk data as it becomes available, and would represent a useful tool for forward-looking coastal risk management for decision-makers.

3.
Data Brief ; 47: 108924, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36798595

RESUMEN

The long-term provision of ocean ecosystem services depends on healthy ecosystems and effective sustainable management. Understanding public opinion about marine and coastal ecosystems is important to guide decision-making and inform specific actions. However, available data on public perceptions on the interlinked effects of climate change, human impacts and the value and management of marine and coastal ecosystems are rare. This dataset presents raw data from an online, self-administered, public awareness survey conducted between November 2021 and February 2022 which yielded 709 responses from 42 countries. The survey was released in four languages (English, French, Spanish and Italian) and consisted of four main parts: (1) perceptions about climate change; (2) perceptions about the value of, and threats to, coasts, oceans and their wildlife, (3) perceptions about climate change response; and (4) socio-demographic information. Participation in the survey was voluntary and all respondents provided informed consent after reading a participant information form at the beginning of the survey. Responses were anonymous unless respondents chose to provide contact information. All identifying information has been removed from the dataset. The dataset can be used to conduct quantitative analyses, especially in the area of public perceptions of the interlinkages between climate change, human impacts and options for sustainable management in the context of marine and coastal ecosystems. The dataset is provided with this article, including a copy of the survey and participant information forms in all four languages, data and the corresponding codebook.

4.
Risk Anal ; 43(11): 2241-2261, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36690591

RESUMEN

Climate change influences the frequency of extreme events that affect both human and natural systems. It requires systemic climate change adaptation to address the complexity of risks across multiple domains and tackle the uncertainties of future scenarios. This paper introduces a multirisk analysis of climate hazard, exposure, vulnerability, and risk severity, specifically designed to hotspot geographic locations and prioritize system receptors that are affected by climate-related extremes. The analysis is demonstrated for the Metropolitan City of Venice. Representative scenarios (RCP4.5 and RCP8.5) of climate threats (i.e., storm surges, pluvial flood, heat waves, and drought) are selected and represented by projections of Regional Climate Models for a 30-year period (2021-2050). A sample of results is as follows. First, an increase in the risk is largely due to drought, pluvial flood, and storm surge, depending on the areas of interest, with the overall situation worsening under the RCP8.5 scenario. Second, particular locations have colocated vulnerable receptors at higher risk, concentrated in the urban centers (e.g., housing, railways, roads) and along the coast (e.g., beaches, wetlands, primary sector). Third, risk communication of potential environmental and socio-economic losses via the multirisk maps is useful to stakeholders and public administration. Fourth, the multirisk maps recommend priorities for future investigation and risk management, such as collection of sensor data, elaboration of mitigations, and adaptation plans at hotspot locations.

5.
Sci Total Environ ; 861: 160687, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36473660

RESUMEN

Cumulative impacts increasingly threaten marine and coastal ecosystems. To address this issue, the research community has invested efforts on designing and testing different methodological approaches and tools that apply cumulative impact appraisal schemes for a sound evaluation of the complex interactions and dynamics among multiple pressures affecting marine and coastal ecosystems. Through an iterative scientometric and systematic literature review, this paper provides the state of the art of cumulative impact assessment approaches and applications. It gives a specific attention to cutting-edge approaches that explore and model inter-relations among climatic and anthropogenic pressures, vulnerability and resilience of marine and coastal ecosystems to these pressures, and the resulting changes in ecosystem services flow. Despite recent advances in computer sciences and the rising availability of big data for environmental monitoring and management, this literature review evidenced that the implementation of advanced complex system methods for cumulative risk assessment remains limited. Moreover, experts have only recently started integrating ecosystem services flow into cumulative impact appraisal frameworks, but more as a general assessment endpoint within the overall evaluation process (e.g. changes in the bundle of ecosystem services against cumulative impacts). The review also highlights a lack of integrated approaches and complex tools able to frame, explain, and model spatio-temporal dynamics of marine and coastal ecosystems' response to multiple pressures, as required under relevant EU legislation (e.g., Water Framework and Marine Strategy Framework Directives). Progress in understanding cumulative impacts, exploiting the functionalities of more sophisticated machine learning-based approaches (e.g., big data integration), will support decision-makers in the achievement of environmental and sustainability objectives.


Asunto(s)
Efectos Antropogénicos , Ecosistema , Monitoreo del Ambiente/métodos , Medición de Riesgo , Agua
6.
Integr Environ Assess Manag ; 18(6): 1564-1577, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35429140

RESUMEN

According to the latest projections of the Intergovernmental Panel on Climate Change, at the end of the century, coastal zones and low-lying ecosystems will be increasingly threatened by rising global mean sea levels. In order to support integrated coastal zone management and advance the basic "source-pathway-receptor-consequence" approach focused on traditional receptors (e.g., population, infrastructure, and economy), a novel risk framework is proposed able to evaluate potential risks of loss or degradation of ecosystem services (ESs) due to projected extreme sea level scenarios in the Italian coast. Three risk scenarios for the reference period (1969-2010) and future time frame up to 2050 under RCP4.5 and RCP8.5 are developed by integrating extreme water-level projections related to changing climate conditions, with vulnerability information about the topography, distance from coastlines, and presence of artificial protections. A risk assessment is then performed considering the potential effects of the spatial-temporal variability of inundations and land use on the supply level and spatial distribution of ESs. The results of the analysis are summarized into a spatially explicit risk index, useful to rank coastal areas more prone to ESs losses or degradation due to coastal inundation at the national scale. Overall, the Northern Adriatic coast is scored at high risk of ESs loss or degradation in the future scenario. Other small coastal strips with medium risk scores are the Eastern Puglia coast, Western Sardinia, and Tuscany's coast. The ESs Coastal Risk Index provides an easy-to-understand screening assessment that could support the prioritization of areas for coastal adaptation at the national scale. Moreover, this index allows the direct evaluation of the public value of ecosystems and supports more effective territorial planning and environmental management decisions. In particular, it could support the mainstreaming of ecosystem-based approaches (e.g., ecological engineering and green infrastructures) to mitigate the risks of climate change and extreme events while protecting ecosystems and biodiversity. Integr Environ Assess Manag 2022;18:1564-1577. © 2021 SETAC.


Asunto(s)
Cambio Climático , Ecosistema , Elevación del Nivel del Mar , Biodiversidad , Italia
7.
Integr Environ Assess Manag ; 16(5): 761-772, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32320132

RESUMEN

We assess the relative vulnerability of the Mediterranean shoreline of Egypt (about 1000 km in length) to climate change (i.e., sea-level rise [SLR], storm surge flooding, and coastal erosion) by using a Climate-improved Coastal Vulnerability Index (CCVI). We integrate information relative to a multidimensional set of physical, geological, and socioeconomic variables, and add to the mainstream literature the consideration of both a reference and a climate change scenario, assuming the representative concentration pathway 8.5 W/m2 (RCP8.5) for the 21st century in the Mediterranean region. Results report that approximately 1% (~43 km²) of the mapped shoreline is classifiable as having a high or very high vulnerability, whereas approximately 80% (4652 km²) shows very low vulnerability. As expected, exposure to inundation and erosion is especially relevant in highly developed and urbanized coastal areas. Along the shoreline, while the Nile Delta region is the most prone area to coastal erosion and permanent or occasional inundations (both in the reference and in the climate scenario), results show the Western Desert area to be less vulnerable due to its geological characteristics (i.e., rocky and cliffed coasts, steeper coastal slope). The application of the CCVI to the coast of Egypt can be considered as a first screening of the hot-spot risk areas at the national scale. The results of the analysis, including vulnerability maps and indicators, can be used to support the development of climate adaptation and integrated coastal zone management strategies. Integr Environ Assess Manag 2020;16:761-772. © 2020 SETAC.


Asunto(s)
Cambio Climático , Elevación del Nivel del Mar , Egipto , Inundaciones
8.
Sci Total Environ ; 703: 134972, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-31759699

RESUMEN

Oceans are changing faster than even observed before. Unprecedented climate variability is interacting with long-term trends, all against a backdrop of rising anthropogenic use of marine space. The growth of maritime activities is taking place without the full understanding of complex interactions between natural and human-induced changes, leading to a progressive decline of biodiversity and degradation of marine ecosystems. Against this complex interplay, marine managers and policy makers are increasingly calling for new approaches and tools allowing a multi-scenario assessment of environmental impacts arising from the complex interaction between natural and anthropogenic drivers, also in consideration of multiple marine plans objectives. Responding to this need, for the Adriatic Sea we developed a GIS-based Bayesian Network to evaluate the probability (and related uncertainty) of cumulative impacts under four 'what-if' scenarios representing different marine management options and climate conditions. We addressed issues concerning consequences of potential planning measures, as well as management programmes required to achieve environmental status targets, as required by relevant EU acquis. Results from the scenario analysis highlighted that an integrated approach to maritime spatial planning is required, combining more sustainable management options of marine spaces and resources with climate adaptation strategies. This approach to planning would allow to reduce human pressures on the marine environment and rise resilience of natural ecosystems to climate and human-induced disturbances, which would result in an overall decrease of cumulative impacts.

9.
Sci Total Environ ; 670: 379-397, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-30904652

RESUMEN

Assessing and managing cumulative impacts produced by interactive anthropogenic and natural drivers is a major challenge to achieve the sustainable use of marine spaces in line with the objectives of relevant EU acquis. However, the complexity of the marine environment and the uncertainty linked to future climate and socio-economic scenarios, represent major obstacles for understanding the multiplicity of impacts on the marine ecosystems and to identify appropriate management strategies to be implemented. Going beyond the traditional additive approach for cumulative impact appraisal, the Cumulative Impact Index (CI-Index) proposed in this paper applies advanced Multi-Criteria Decision Analysis techniques to spatially model relationships between interactive climate and anthropogenic pressures, the environmental exposure and vulnerability patterns and the potential cumulative impacts for the marine ecosystems at risk. The assessment was performed based on spatial data characterizing location and vulnerability of 5 relevant marine targets (e.g. seagrasses and coral beds), and the distribution of 17 human activities (e.g. trawling, maritime traffic) during a reference scenario 2000-2015. Moreover, projections for selected physical and biogeochemical parameters (temperature and chlorophyll 'a') for the 2035-2050 timeframe under RCP8.5 scenario, were integrated in the assessment to evaluate index variations due to changing climate conditions. The application of the CI-Index in the Adriatic Sea, showed higher cumulative impacts in the Northern part of the basin and along the Italian continental shelf, where the high concentration of human activities, the seawater temperature conditions and the presence of vulnerable benthic habitats, contribute to increase the overall impact estimate. Moreover, the CI-Index allowed understanding which are the phenomena contributing to synergic pressures creating potential pathways of environmental disturbance for marine ecosystems. Finally, the application in the Adriatic case showed how the output of the CI-Index can provide support to evaluate multi-risk scenarios and to drive sustainable maritime spatial planning and management.

10.
Philos Trans A Math Phys Eng Sci ; 376(2121)2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29712797

RESUMEN

We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'.


Asunto(s)
Cambio Climático , Política Ambiental , Medición de Riesgo , Simulación por Computador , Planificación en Desastres , Humanos , Italia
11.
Sci Total Environ ; 618: 1008-1023, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29079085

RESUMEN

In the last few decades the health of marine ecosystems has been progressively endangered by the anthropogenic presence. Natural and human-made pressures, as well as climate change effects, are posing increasing threats on marine areas, triggering alteration of biological, chemical and physical processes. Planning of marine areas has become a challenge for decision makers involved in the design of sustainable management options. In order to address threats posed by climate drivers in combination with local to regional anthropogenic pressures affecting marine ecosystems and activities, a multi-hazard assessment methodology was developed and applied to the Adriatic Sea for the reference scenario 2000-2015. Through a four-stages process based on the consecutive analysis of hazard, exposure, vulnerability and risk the methodology allows a semi-quantitative evaluation of the relative risk from anthropogenic and natural sources to multiple endpoints, thus supporting the identification and ranking of areas and targets more likely to be at risk. Resulting output showed that the higher relative hazard scores are linked to exogenic pressures (e.g. sea surface temperature variation) while the lower ones resulted from endogenic and more localized stressors (e.g. abrasion, nutrient input). Relatively very high scores were observed for vulnerability over the whole case study for almost all the considered pressures, showing seagrasses meadows, maërl and coral beds as the most susceptible targets. The approach outlined in this study provides planners and decision makers a quick-screening tool to evaluate progress towards attaining a good environmental status and to identify marine areas where management actions and adaptation strategies would be best targeted. Moreover, by focusing on risks induced by land-based drivers, resulting output can support the design of infrastructures for reducing pressures on the sea, contributing to improve the land-sea interface management.


Asunto(s)
Cambio Climático , Ecosistema , Monitoreo del Ambiente , Océanos y Mares , Animales , Conservación de los Recursos Naturales , Humanos , Biología Marina , Medición de Riesgo , Análisis Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...